Chapitre 14 : Polynômes

Table des matières

1	Les polynômes comme objets algébriques	2
	1.1 L'algèbre des polynômes	2
	1.2 Degré d'un polynôme	3
	1.3 Substitution de l'indéterminée dans un polynôme	4
	1.3.1 Évaluation d'un polynôme	4
	1.3.2 Composition de deux polynômes	5
2	Divisibilité et division euclidienne dans $\mathbb{K}[X]$	5
3	Dérivation des polynômes	6
	3.1 Polynôme dérivé	6
	3.2 Dérivées successives	7
	3.3 Formule de Taylor polynomiale	7
4	Racines d'un polynôme	8
	4.1 Définition et existence	8
	4.2 Lien avec la divisibilité des polynômes	8
	4.3 Relation entre le degré et le nombre de racines	8
	4.4 Multiplicité d'une racine	ç
	4.5 Lien entre multiplicité et dérivation	10
	4.6 Relations entre coefficients et racines	10
5	Factorisation	11
	5.1 Polynômes scindés	11
	5.2 Polynômes irréductibles	
	5.3 Décomposition en facteurs irréductibles dans $\mathbb{C}[X]$	
	5.4 Décomposition en facteurs irréductibles dans $\mathbb{R}[X]$	
6	Décomposition en éléments simples d'une fonction rationnelle	13

Dans tout le chapitre, \mathbb{K} désigne \mathbb{R} ou \mathbb{C} . Les éléments de \mathbb{K} sont appelés des scalaires.

1 Les polynômes comme objets algébriques

1.1 L'algèbre des polynômes

Définition 1.1 (polynôme et coefficient)

On appelle polynôme à coefficients dans \mathbb{K} toute suite $P = (a_n)_{n \in \mathbb{N}} \in \mathbb{K}^{\mathbb{N}}$ dont les coefficients sont nuls à partir d'un certain rang.

Pour $n \in \mathbb{N}$, a_n est appelé le coefficient de degré n du polynôme P.

Remarque: Deux polynômes sont égaux si, et seulement si, ils ont les mêmes coefficients.

Définition 1.2 (opérations sur les polynômes)

Soient $P = (a_n)_{n \in \mathbb{N}}$ et $Q = (b_n)_{n \in \mathbb{N}}$ deux polynômes à coefficients dans \mathbb{K} . Soit $\lambda \in \mathbb{K}$. La somme de P et de Q est le polynôme $P + Q = (a_n + b_n)_{n \in \mathbb{N}}$.

Le <u>produit de P et de Q est le polynôme $P \times Q = PQ = (c_n)_{n \in \mathbb{N}}$ définie par $\forall n \in \mathbb{N}, c_n = \sum_{k=0}^n a_k b_{n-k}$.</u>

Le produit de P par un scalaire λ est le polynôme $\lambda P = \lambda P = (\lambda a_n)_{n \in \mathbb{N}}$.

Exemple 1.3 : Soient $P = (1,2,1,0,\cdots)$ et $Q = (1,1,0,\cdots)$. Alors, $P + Q = (2,3,1,0,\cdots)$, $PQ = (1,3,3,1,0,\cdots)$ et $3P = (3,6,3,0,\cdots)$.

Définition 1.4 (itéré d'un polynôme)

Soit P un polynôme à coefficients dans \mathbb{K} .

Pour tout $n \in \mathbb{N}$, on note P^n le polynôme $\underbrace{P \times \cdots \times P}_{n \text{ fois}}$.

Par convention, $P^0 = (1,0,0,\cdots)$.

Notation : On notera X le polynôme $(0,1,0,\cdots)$, appelée indéterminée. Avec le produit défini plus haut, on a $X^2=(0,0,1,0,\cdots), X^3=(0,0,0,1,0,\cdots)$, etc. Par ailleurs, on notera par abus λ le polynôme $(\lambda,0,0,\cdots)$ où $\lambda \in \mathbb{K}$. Avec ces notations, pour tout polynôme $P=(a_k)_{k\in\mathbb{N}}$, il existe $n\in\mathbb{N}$ tel que :

$$P = \sum_{k=0}^{n} a_k X^k = a_0 + a_1 X + \dots + a_n X^n$$

On note parfois $P = \sum_{k=0}^{+\infty} a_k X^k$, cet « somme infinie » est en fait une somme finie (termes nuls à partir de k = n+1).

L'avantage d'une telle notation est que l'on n'a pas besoin de préciser la valeur de l'entier n.

Exemple 1.5 : En reprenant l'exemple précédent, on note alors $P = 1 + 2X + X^2$ et Q = 1 + X.

Notation : On note $\mathbb{K}[X]$ l'ensemble des polynômes à coefficients dans \mathbb{K} en l'indéterminée X.

Hors programme : L'ensemble $\mathbb{K}[X]$ muni des lois $+, \times$ et \cdot vérifient certaines propriétés classiques. On dit que $(\mathbb{K}[X], +, \cdot, \times)$ est une « \mathbb{K} -algèbre commutative ».

Proposition 1.6 (formules du binôme de Newton et de factorisation dans $\mathbb{K}[X]$)

Soient $P,Q \in \mathbb{K}[X]$. Soit $n \in \mathbb{N}$.

Alors

$$(P+Q)^n = \sum_{k=0}^n \binom{n}{k} P^k Q^{n-k}$$
 et $P^n - Q^n = (P-Q) \times \sum_{k=0}^{n-1} P^k Q^{n-1-k}$

1.2 Degré d'un polynôme

Définition 1.7 (degré, coefficient dominant, polynôme unitaire)

Soit $P \in \mathbb{K}[X]$. On définit le degré de P, noté $\deg(P)$, de la manière suivante :

1. Si $P \neq 0$, P peut s'écrire de manière unique sous la forme

$$P = \sum_{k=0}^{n} a_k X^k \quad \text{avec} \quad \begin{cases} n \in \mathbb{N} \\ \forall k \in [0, n], a_k \in \mathbb{K} \\ a_n \neq 0 \end{cases}.$$

On dit alors que le <u>degré</u> du polynôme P est n, et que a_n est le <u>coefficient dominant</u> de P. Lorsque ce coefficient dominant a_n est égal à 1, on dit que le polynôme P est <u>unitaire</u>.

2. Si P = 0, on dit que le degré de P est $-\infty$.

Remarques:

- Un polynôme unitaire est non nul par définition.
- Les polynômes de degré 0 sont les scalaires non nuls.

Définition 1.8 (ensemble $\mathbb{K}_n[X]$)

Soit $n \in \mathbb{N}$. On note $\mathbb{K}_n[X]$ l'ensemble des polynômes de degré inférieur ou égal à n.

Vocabulaire : Les éléments de $\mathbb{K}_0[X]$ (polynômes de degré au plus 0) sont appelés <u>polynômes constants</u>. Par abus, nous ne ferons pas de distinction entre $\mathbb{K}_0[X]$ et \mathbb{K} .

Conventions:

- $-\infty < n$ pour tout entier n;
- $(-\infty) + (-\infty) = -\infty$; $(-\infty) + n = n + (-\infty) = -\infty$ pour tout entier n;
- $(-\infty) \times n = n \times (-\infty) = -\infty$ pour tout $n \in \mathbb{N}^*$.

Proposition 1.9 (degré d'un produit et d'une somme)

Soient P et Q dans $\mathbb{K}[X]$.

- 1. deg(PQ) = deg(P) + deg(Q)
- $\begin{aligned} 2. & \deg(P+Q) \leqslant \max(\deg(P), \deg(Q)). \\ & \text{Condition suffisante d'égalit\'e} : \text{si } \deg(P) \neq \deg(Q), \text{ alors } \deg(P+Q) = \max(\deg(P), \deg(Q)). \end{aligned}$

Remarques:

- 1. En particulier pour $\alpha \in \mathbb{K}$, $\deg(\alpha P) \leq \deg(P)$ (on a l'égalité si $\alpha \neq 0$).
- 2. Dans le cas où P et Q sont non nuls et de même degré, $\deg(P+Q) = \max(\deg(P), \deg(Q))$ si et seulement si la somme des coefficients dominants est non nulle.

Corollaire 1.10 (simplifications dans $\mathbb{K}[X]$)

Soient P, Q et R dans $\mathbb{K}[X]$.

- 1. $PQ = 0 \Leftrightarrow (P = 0 \text{ ou } Q = 0)$
- 2. $(P \neq 0 \text{ et } PQ = PR) \implies Q = R$

1.3 Substitution de l'indéterminée dans un polynôme

1.3.1 Évaluation d'un polynôme

Définition 1.11 (évaluation d'un polynôme en une valeur de \mathbb{K})

Soient $P \in \mathbb{K}[X]$ et $\alpha \in \mathbb{K}$.

On définit le scalaire $P(\alpha)$ comme le scalaire obtenu en remplaçant l'indéterminée X par α dans l'expression de P.

Autrement dit, si $P = \sum_{k=0}^{n} a_k X^k$ avec $n \in \mathbb{N}$ et $\forall k \in [0,n], a_k \in \mathbb{K}$, alors $P(\alpha) = \sum_{k=0}^{n} a_k \alpha^k$.

Remarque: $P(0) = a_0$ (coefficient constant) car par convention $0^0 = 1$.

Algorithme de Hörner:

Pour évaluer un polynôme $P = \sum_{k=0}^{n} a_k X^k$ en α , il suffit de faire n additions et n multiplications en suivant le parenthésage ci-dessous (en commençant par la parenthèse la plus intérieure) :

$$P(\alpha) = ((\cdots((a_n\alpha + a_{n-1})\alpha + a_{n-2})\alpha + \cdots)\alpha + a_1)\alpha + a_0$$

C'est la méthode la plus efficace pour évaluer un polynôme informatiquement.

Algorithme d'Hörner sous Python où P est représenté par une liste contenant ses coefficients :

```
def Horner(P,alpha):
    s=0
    for k in range(len(P)):
        s=s*alpha+P[len(P)-1-k]
    return s
```

Exemple 1.12 : Évaluer $P = 2X^4 - X^3 + 3X^2 - 1$ en -2 grâce à l'algorithme d'Hörner.

Définition 1.13 (fonction polynomiale)

Une fonction polynomiale est une fonction f définie sur une partie non vide E de \mathbb{K} et à valeurs dans \mathbb{K} telle qu'il existe un polynôme $P \in \mathbb{K}[X]$ pour lequel

$$\forall x \in E, \quad f(x) = P(x).$$

On dit qu'une telle fonction est la fonction polynomiale associée au polynôme P.

Autrement dit, une fonction polynomiale est une fonction de la forme $x \mapsto \sum_{k=0}^{n} a_k x^k$.

Notation : La fonction polynomiale (sur un ensemble $E \subset \mathbb{K}$) associée à un polynôme P est notée \widetilde{P} .

1.3.2 Composition de deux polynômes

Définition 1.14 (composée de deux polynômes)

Soient P et Q dans $\mathbb{K}[X]$.

On définit le polynôme composé $P \circ Q$ (aussi noté P(Q)) comme le polynôme obtenu en remplaçant l'indéterminée X par Q dans l'expression de P.

Autrement dit, si $P = \sum_{k=0}^{n} a_k X^k$ avec $n \in \mathbb{N}$ et $\forall k \in [0,n], a_k \in \mathbb{K}$, alors $P \circ Q = P(Q) = \sum_{k=0}^{n} a_k Q^k$.

Exemple 1.15: Pour $P = X^2 + 2X$ et Q = X + 3, calculer $Q \circ P$ et $P \circ Q$.

Proposition 1.16 (degré d'un polynôme composé)

Soient $P,Q \in \mathbb{K}[X]$, avec Q non constant (i.e. $\deg(Q) > 0$). Alors $\deg(P \circ Q) = \deg(P) \times \deg(Q)$.

Remarque : Lorsque Q est un polynôme constant $\alpha \in \mathbb{K}$, alors $P \circ Q = P(\alpha) \in \mathbb{K}$ est de degré $-\infty$ ou 0, suivant que $P(\alpha)$ est nul ou non.

2 Divisibilité et division euclidienne dans $\mathbb{K}[X]$

Dans cette partie, nous noterons A et B des polynômes génériques et garderons la lettre Q pour le "quotient".

Définition 2.1 (relation de divisibilité dans $\mathbb{K}[X]$)

Soient $A,B \in \mathbb{K}[X]$.

On dit que \underline{A} divise \underline{B} dans $\mathbb{K}[X]$, ce que l'on note $A \mid B$, lorsqu'il existe $Q \in \mathbb{K}[X]$ tel que B = QA. On dit alors que A est un <u>diviseur</u> de B et que B est un multiple de A.

On note Mul(A) l'ensemble des multiples de A et Div(B) l'ensemble des diviseurs de B.

Remarques:

- 1. On a $\operatorname{Mul}(0) = \{0\}, \forall A \in \mathbb{K}[X], 1 \in \operatorname{Div}(A) \text{ et } 0 \in \operatorname{Mul}(B).$
- 2. Si $D \mid A$ et $D \mid B$, alors D divise n'importe quelle **combinaison arithmétique** de A et B, c'est-à-dire $D \mid AU + BV$ pour tous U et V dans $\mathbb{K}[X]$.

Proposition 2.2 (conséquence de la divisibilité en termes d'inégalité sur le degré)

Soient $A, B \in \mathbb{K}[X] \setminus \{0\}$ tels que $A \mid B$. Alors $\deg(A) \leqslant \deg(B)$.

Définition 2.3 (éléments associés dans $\mathbb{K}[X]$)

Soient $A, B \in \mathbb{K}[X]$. On dit que A et B sont associés lorsque $A \mid B$ et $B \mid A$.

Proposition 2.4 (caractérisation des éléments associés)

Deux éléments de $\mathbb{K}[X]$ sont associés si et seulement s'il existe $\lambda \in \mathbb{K}^*$ tel que $A = \lambda B$.

Théorème 2.5 (théorème de la division euclidienne dans $\mathbb{K}[X]$)

Soient $A,B \in \mathbb{K}[X]$, avec $B \neq 0$. Il existe un unique couple $(Q,R) \in \mathbb{K}[X]^2$ tel que :

$$\begin{cases} A = BQ + R \\ \deg(R) < \deg(B) \end{cases}$$

Cette écriture est appelée division euclidienne de A par B.

Dans cette division euclidienne, Q est appelé quotient et R est appelé reste.

Remarque : Soit $(A,B) \in \mathbb{K}[X]^2$ avec $B \neq 0$; $B \mid A \Leftrightarrow$ le reste de la division euclidienne de A par B est 0.

Exemple 2.6 : Effectuer la division euclidienne de $A = X^4 + 3X^3 + 7X^2 - X + 5$ par $B = X^2 + 1$.

3 Dérivation des polynômes

3.1 Polynôme dérivé

Définition 3.1 (polynôme dérivé)

Soit $P \in \mathbb{K}[X]$, qui s'écrit sous la forme $P = \sum_{k=0}^{n} a_k X^k$ (avec $n \in \mathbb{N}$ et $a_k \in \mathbb{K}$).

On définit son polynôme dérivé P^\prime :

$$P' = \sum_{k=1}^{n} k a_k X^{k-1} = \sum_{k=0}^{n-1} (k+1) a_{k+1} X^k.$$

Remarque : La dérivée d'un polynôme existe toujours, et correspond à la dérivée de la fonction polynomiale associée.

Proposition 3.2 (degré d'un polynôme dérivé)

Soit $P \in \mathbb{K}[X]$.

- 1. Si $\deg(P) \ge 1$ (i.e. si P est non constant), alors $\deg(P') = \deg(P) 1$.
- 2. Si $\deg(P) < 1$ (i.e. si P est constant), alors P' = 0 et donc $\deg(P') = -\infty$.

Autrement dit:

$$\deg(P') = \left\{ \begin{array}{ll} \deg(P) - 1 & \mathrm{si} \ \deg(P) \geqslant 1 \\ -\infty & \mathrm{sinon} \end{array} \right..$$

Théorème 3.3 (dérivation d'une combinaison linéaire, d'un produit, d'une composée)

Soient P et Q dans $\mathbb{K}[X]$.

- 1. Pour tous λ et μ dans \mathbb{K} , $(\lambda P + \mu Q)' = \lambda P' + \mu Q'$
- 2. (PQ)' = P'Q + PQ'
- 3. $(P \circ Q)' = Q' \times (P' \circ Q)$

3.2 Dérivées successives

Définition 3.4 (polynômes dérivés successifs)

Soit $P \in \mathbb{K}[X]$.

On définit les <u>polynômes dérivés successifs</u> de P de la même manière que pour les fonctions (par récurrence), en <u>posant</u> :

$$\left\{ \begin{array}{l} P^{(0)} = P \\ P^{(n)} = \left(P^{(n-1)}\right)' \text{ pour tout } n \in \mathbb{N}^*. \end{array} \right.$$

Proposition 3.5 (degré de la dérivée *n*-ième d'un polynôme)

Soit $P \in \mathbb{K}[X]$, et soit $n \in \mathbb{N}$.

- 1. Si $deg(P) \ge n$, alors $deg(P^{(n)}) = deg(P) n$.
 - 2. Si deg(P) < n, alors $P^{(n)} = 0$ et donc $deg(P^{(n)}) = -\infty$.

Autrement dit:

$$\deg(P^{(n)}) = \left\{ \begin{array}{ll} \deg(P) - n & \text{si } \deg(P) \geqslant n \\ -\infty & \text{sinon} \end{array} \right..$$

Corollaire 3.6 (caractérisation des polynômes de dérivée *n*-ième nulle)

Soient $P \in \mathbb{K}[X]$ et $n \in \mathbb{N}$. $P^{(n)} = 0$ si et seulement si $\deg(P) < n$.

Théorème 3.7 (dérivations successives d'une combinaison linéaire, d'un produit)

Soient P et Q dans $\mathbb{K}[X]$, et soit $n \in \mathbb{N}$.

- 1. Pour tous λ et μ dans \mathbb{K} , $(\lambda P + \mu Q)^{(n)} = \lambda P^{(n)} + \mu Q^{(n)}$.
- 2. Formule de Leibniz : $(PQ)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} P^{(k)} Q^{(n-k)} = \sum_{k=0}^{n} \binom{n}{k} P^{(n-k)} Q^{(k)}$.

3.3 Formule de Taylor polynomiale

Théorème 3.8 (formule de Taylor polynomiale)

Soit $P \in \mathbb{K}[X]$ et soit $\alpha \in \mathbb{K}$.

Pour tout $n \in \mathbb{N}$ tel que $n \geqslant \deg(P)$, on a :

$$P = \sum_{k=0}^{n} \frac{P^{(k)}(\alpha)}{k!} (X - \alpha)^{k} = P(\alpha) + P'(\alpha)(X - \alpha) + \frac{P''(\alpha)}{2} (X - \alpha)^{2} + \dots + \frac{P^{(n)}(\alpha)}{n!} (X - \alpha)^{n}.$$

Remarque : Pour $\alpha = 0$, $P = \sum_{k=0}^{n} \frac{P^{(k)}(0)}{k!} X^{k}$: les scalaires $\frac{P^{(k)}(0)}{k!}$ sont les coefficients du polynôme P.

Exemple 3.9 : Écrire la formule de Taylor polynomiale en $\alpha = 1$ pour $P = X^3 - X + 2$.

4 Racines d'un polynôme

4.1 Définition et existence

Définition 4.1

Soient $P \in \mathbb{K}[X]$ et $\alpha \in \mathbb{K}$. On dit que α est une <u>racine</u> (ou un zéro) du polynôme P lorsque $P(\alpha) = 0$.

Remarque: Si $P \in \mathbb{R}[X]$ a pour racine $\alpha \in \mathbb{C} \setminus \mathbb{R}$, alors $\overline{\alpha}$ est aussi racine de P.

4.2 Lien avec la divisibilité des polynômes

Théorème 4.2 (caractérisation d'une racine en termes de divisibilité)

Soit $P \in \mathbb{K}[X]$ et soit $\alpha \in \mathbb{K}$.

Le scalaire α est racine de P si et seulement si $(X - \alpha)|P$.

Proposition 4.3 (divisibilité lorsqu'on a plusieurs racines)

Soit $P \in \mathbb{K}[X]$, soit $n \in \mathbb{N}^*$ et soient $\alpha_1, \ldots, \alpha_n \in \mathbb{K}$ des racines **distinctes** de P.

Alors
$$\prod_{k=1}^{n} (X - \alpha_k) | P$$
.

Remarque : Dans le cas d'un polynôme $P \in \mathbb{R}[X]$ avec une racine $\alpha \in \mathbb{C} \setminus \mathbb{R}$, $\overline{\alpha}$ est une racine de P distincte de α , donc le polynôme P est multiple du polynôme réel : $(X - \alpha)(X - \overline{\alpha}) = X^2 - 2\mathfrak{Re}(\alpha)X + |\alpha|^2$.

4.3 Relation entre le degré et le nombre de racines

Théorème 4.4 (majoration du nombre de racines)

Le nombre de racines d'un polynôme non nul est majoré par son degré.

Corollaire 4.5 (un polynôme ayant une infinité de racines est nul)

Soit $P \in \mathbb{K}[X]$ tel que P admet une infinité de racines. Alors P est le polynôme nul.

Corollaire 4.6 (unicité du polynôme définissant une fonction polynomiale)

Si f est une fonction polynomiale sur une partie **infinie** de \mathbb{K} , alors le polynôme définissant la fonction polynomiale f est unique.

Reformulation : Si P et $Q \in \mathbb{K}[X]$ sont tels que P(x) = Q(x) sur une partie infinie de \mathbb{K} , alors ils sont égaux.

Démonstration. Soit E une partie infinie de \mathbb{K} , et soient P et $Q \in \mathbb{K}[X]$ tels que : $\forall x \in E, P(x) = Q(x)$. Le polynôme P-Q a alors une infinité de racines (tous les éléments de E), donc P-Q=0, i.e. P=Q.

4.4 Multiplicité d'une racine

Définition 4.7 (multiplicité)

Soit $P \in \mathbb{K}[X]$ un polynôme non nul, et soit $\alpha \in \mathbb{K}$.

On appelle multiplicité de α en tant que racine de P le plus grand entier m tel que $(X - \alpha)^m$ divise P:

$$m = \max \{k \in \mathbb{N}, (X - \alpha)^k | P\}.$$

On dit alors que α est une racine de multiplicité m de P.

Remarques:

- 1. Un tel maximum existe bien, car l'ensemble $\{k \in \mathbb{N}, (X \alpha)^k | P\}$ est une partie de \mathbb{N} non vide (elle contient 0) et majorée (par $\deg(P)$).
- 2. Dire que α est racine de P de multiplicité 0 revient à dire que α n'est pas racine de P. Par conséquent, α est racine de P si et seulement si sa multiplicité est au moins égale à 1.

Un peu de vocabulaire:

On dit qu'une racine est :

- une racine simple lorsque sa multiplicité est égale à 1;
- une racine multiple lorsque sa multiplicité est supérieure ou égale à 2;
- une <u>racine double</u> lorsque sa multiplicité est égale à 2;
- une racine triple lorsque sa multiplicité est égale à 3.

On appelle <u>nombre de racines comptées avec multiplicités</u> la somme des multiplicités de toutes les racines d'un polynôme.

${\bf Proposition} \ {\bf 4.8} \ ({\bf première} \ {\bf caract\'erisation} \ {\bf de} \ {\bf la} \ {\bf multiplicit\'e)}$

Soient $P \in \mathbb{K}[X]$ un polynôme non nul, $\alpha \in \mathbb{K}$ et $m \in \mathbb{N}$.

- 1. α est racine de P de multiplicité au moins m si et seulement si $\exists Q \in \mathbb{K}[X], P = (X \alpha)^m Q$.
- 2. α est racine de P de multiplicité égale à m si et seulement si : $\exists Q \in \mathbb{K}[X], \left\{ \begin{array}{l} P = (X \alpha)^m Q \\ Q(\alpha) \neq 0 \end{array} \right.$

Exemple 4.9: Montrer que 1 est racine double de $X^3 + X^2 - 5X + 3$.

Cas des polynômes de degré 2 :

Soit $P = aX^2 + bX + c$ un polynôme de degré 2, avec $a, b, c \in \mathbb{K}$ et $a \neq 0$. On note $\Delta = b^2 - 4ac$ son discriminant.

- Si $\Delta \neq 0$, P possède deux racines simples dans \mathbb{C} .
- Si $\Delta = 0$, P possède une racine double dans \mathbb{K} .

Proposition 4.10 (divisibilité lorsqu'on a plusieurs racines avec multiplicités)

Soit $P \in \mathbb{K}[X]$ un polynôme non nul, et soient $\alpha_1, \ldots, \alpha_n \in \mathbb{K}$ des racines distinctes de P de multiplicités respectives $m_1, \ldots, m_n \in \mathbb{N}$. Alors $\prod_{k=1}^n (X - \alpha_k)^{m_k} | P$.

Corollaire 4.11 (majoration du nombre de racines avec multiplicités)

Le nombre de racines comptées avec multiplicités d'un polynôme non nul est majoré par son degré.

4.5 Lien entre multiplicité et dérivation

Théorème 4.12 (seconde caractérisation de la multiplicité, avec les dérivées successives)

Soit $P \in \mathbb{K}[X]$ un polynôme non nul, et soient $\alpha \in \mathbb{K}$, $m \in \mathbb{N}$.

1. α est racine de P de multiplicité au moins m si et seulement si :

$$\forall k \in [0; m-1], P^{(k)}(\alpha) = 0.$$

2. α est racine de P de multiplicité égale à m si et seulement si :

$$\left\{ \begin{array}{l} \forall k \in \llbracket 0; m-1 \rrbracket, P^{(k)}(\alpha) = 0 \\ P^{(m)}(\alpha) \neq 0 \end{array} \right.$$

Cas particulier : Soit $P \in \mathbb{K}[X] \setminus \{0\}$ et soit $\alpha \in \mathbb{K}$.

- α est racine simple de P (multiplicité = 1) si et seulement si $P(\alpha) = 0$ et $P'(\alpha) \neq 0$.
- α est racine multiple de P (multiplicité $\geqslant 2$) si et seulement si $P(\alpha) = 0$ et $P'(\alpha) = 0$.

Exemple 4.13 : Soit $P = X^3 - 11X^2 + 32X - 28$, montrer que P admet une racine multiple.

Proposition 4.14 (multiplicités des racines complexes conjuguées d'un polynôme réel)

Soit $P \in \mathbb{R}[X]$ un polynôme non nul, et soit $\alpha \in \mathbb{C} \setminus \mathbb{R}$ une racine de P de multiplicité $m \in \mathbb{N}$. Alors $\overline{\alpha}$ est aussi une racine de P de multiplicité m.

Remarque : Dans le cas où $P \in \mathbb{R}[X]$ et $\alpha \in \mathbb{C} \setminus \mathbb{R}$ est une racine de P de multiplicité m, le polynôme P est multiple de $(X - \alpha)^m (X - \overline{\alpha})^m = (X^2 - 2\Re \mathfrak{e}(\alpha)X + |\alpha|^2)^m \in \mathbb{R}[X]$.

4.6 Relations entre coefficients et racines

Théorème 4.15 (relations entre coefficients et racines pour un polynôme scindé)

Soit P un polynôme de degré $n \in \mathbb{N}^*$, qui s'écrit sous la forme $P = \sum_{k=0}^n a_k X^k$ (avec $a_k \in \mathbb{K}$).

On suppose que P admet n racines comptées avec multiplicité que l'on note $\alpha_1, \ldots, \alpha_n$, chaque racine étant répétée autant de fois que sa multiplicité.

On a alors

$$\sum_{i=1}^{n} \alpha_i = -\frac{a_{n-1}}{a_n} \qquad \prod_{i=1}^{n} \alpha_i = (-1)^n \frac{a_0}{a_n}$$

Exemples 4.16:

- 1. Soit $P = aX^2 + bX + c$ un polynôme de degré 2 (avec a, b et $c \in \mathbb{K}, a \neq 0$). La somme des deux racines complexes (éventuellement confondues dans le cas d'une racine double) est égale à $-\frac{b}{a}$, et leur produit à $\frac{c}{a}$.
- 2. Soit $P = a_3 X^3 + a_2 X^2 + a_1 X + a_0$ un polynôme de degré 3 (avec a_0, a_1, a_2 et $a_3 \in \mathbb{K}, a_3 \neq 0$), et soient α_1, α_2 et α_3 ses trois racines complexes, chaque racine étant répétée autant de fois que sa multiplicité. On a alors :

$$\alpha_1 + \alpha_2 + \alpha_3 = -\frac{a_2}{a_3}$$
 et $\alpha_1 \alpha_2 \alpha_3 = -\frac{a_0}{a_3}$.

Par exemple, pour $P = X^3 - 6X^2 - X + 30$, notons α_1 , α_2 et α_3 ses racines dans \mathbb{C} , on a :

$$\alpha_1 + \alpha_2 + \alpha_3 = 6$$
 et $\alpha_1 \alpha_2 \alpha_3 = -30$.

Ces relations peuvent aider dans la recherche des racines.

5 Factorisation

5.1 Polynômes scindés

Définition 5.1 (polynôme scindé)

Un polynôme scindé de $\mathbb{K}[X]$ est un polynôme non constant qui peut s'écrire comme produit de polynômes de degré 1 de $\mathbb{K}[X]$.

Vocabulaire : Un polynôme <u>scindé à racines simples</u> est un polynôme scindé et tel que toutes ses racines sont simples.

Exemple 5.2 : Dans $\mathbb{R}[X]$, les polynômes de degré 2 qui sont scindés sont ceux pour lesquels le discriminant est positif ou nul.

Par exemple, le polynôme $X^2 + 1$ n'est pas scindé dans $\mathbb{R}[X]$, mais il l'est dans $\mathbb{C}[X]$, car $X^2 + 1 = (X - \mathbf{i})(X + \mathbf{i})$.

Théorème 5.3 (théorème de d'Alembert-Gauss, admis)

Tout polynôme non constant de $\mathbb{C}[X]$ admet au moins une racine (dans \mathbb{C}).

Corollaire 5.4 (Tout polynôme non constant de $\mathbb{C}[X]$ est scindé)

Tout polynôme non constant de $\mathbb{C}[X]$ est scindé.

Remarque : Par conséquent, le nombre de racines complexes comptées avec multiplicités d'un polynôme non nul est égal à son degré.

5.2 Polynômes irréductibles

Définition 5.5 (polynôme irréductible)

Un <u>poly</u>nôme irréductible est un poly nôme de degré supérieur ou égal à 1 dont les seuls diviseurs sont 1 et lui-même, à multiplication près par un scalaire (non nul).

Autrement dit, $P \in \mathbb{K}[X]$ est irréductible si et seulement si :

- 1. $deg(P) \ge 1$;
- 2. $\forall A, B \in \mathbb{K}[X], P = AB \implies (\deg(A) = 0 \text{ ou } \deg(B) = 0).$

Exemple 5.6 : Soit $P = X^2 + 1$.

- 1. P n'est pas irréductible dans $\mathbb{C}[X]$, car $P = (X \mathbf{i})(X + \mathbf{i})$.
- 2. En revanche, il est irréductible dans $\mathbb{R}[X]$ car il est de degré 2 sans racine réelle (cf. théorème suivant).

Théorème 5.7 (description des polynômes irréductibles de $\mathbb{C}[X]$ ou de $\mathbb{R}[X]$)

- 1. Dans $\mathbb{C}[X]$, les polynômes irréductibles sont les polynômes de degré 1.
- 2. Dans $\mathbb{R}[X]$, les polynômes irréductibles sont :
 - (a) les polynômes de degré 1;
 - (b) les polynômes de degré 2 sans racine réelle (i.e. de discriminant strictement négatif).

Remarques:

- 1. Tout polynôme irréductible **unitaire** de $\mathbb{C}[X]$ est donc de la forme $X \alpha$, avec $\alpha \in \mathbb{C}$.
- 2. Tout polynôme irréductible **unitaire** de $\mathbb{R}[X]$ est donc de la forme :
 - (a) $X \alpha$, avec $\alpha \in \mathbb{R}$;
 - (b) ou $X^2 + aX + b$, avec a et b dans \mathbb{R} et $a^2 4b < 0$.

5.3 Décomposition en facteurs irréductibles dans $\mathbb{C}[X]$

Théorème 5.8 (théorème de décomposition en facteurs irréductibles dans $\mathbb{C}[X]$)

Tout polynôme non nul P de $\mathbb{C}[X]$ se décompose de manière unique, à l'ordre près des facteurs, sous la forme

$$P = a(X - \alpha_1)^{m_1} (X - \alpha_2)^{m_2} \cdots (X - \alpha_r)^{m_r}$$

avec $a \in \mathbb{C}^*$, $r \in \mathbb{N}$, les α_i des nombres complexes distincts et les m_i des entiers naturels non nuls.

Remarques:

- 1. On retrouve la forme d'un polynôme scindé.
- 2. Dans l'écriture précédente, a est le coefficient dominant de P, les α_i sont ses racines et les entiers m_i sont les multiplicités des racines α_i .

Exemple 5.9 : Soit
$$n \in \mathbb{N}^*$$
, la factorisation de $X^n - 1$ dans $\mathbb{C}[X]$ est : $X^n - 1 = \prod_{k=0}^{n-1} \left(X - e^{\frac{2ik\pi}{n}}\right)$

Proposition 5.10 (caractérisation de la divisibilité)

Soient P et Q des polynômes non nuls de $\mathbb{C}[X]$.

Quitte à rajouter des facteurs $(X - \alpha_i)^0$ dans les décompositions de P et Q en facteurs irréductibles, P et Q peuvent s'écrire sous la forme

$$P = a(X - \alpha_1)^{m_1} \cdots (X - \alpha_r)^{m_r}$$
 et $Q = b(X - \alpha_1)^{m'_1} \cdots (X - \alpha_r)^{m'_r}$

avec a et $b \in \mathbb{C}^*$, $r \in \mathbb{N}$, les α_i des nombres complexes distincts et les m_i et m_i' des entiers naturels (pas forcément non nuls). On a alors l'équivalence suivante :

$$P \mid Q \Leftrightarrow \forall i \in [1,r], m_i \leqslant m_i'$$

Traduction en termes de racines et de multiplicités :

Soient P et Q des polynômes non nuls de $\mathbb{C}[X].$ On a l'équivalence :

 $P \mid Q \Leftrightarrow$ toute racine complexe de P est aussi racine de Q, avec une multiplicité supérieure dans Q

Exemple 5.11: Montrer que $(X^2 + X + 1)^2$ divise $(X + 1)^{2023} - X^{2023} - 1$.

5.4 Décomposition en facteurs irréductibles dans $\mathbb{R}[X]$

Théorème 5.12 (théorème de décomposition en facteurs irréductibles dans $\mathbb{R}[X]$)

Tout polynôme non nul P de $\mathbb{R}[X]$ se décompose de manière unique, à l'ordre près des facteurs, comme un produit de polynômes irréductibles unitaires de $\mathbb{R}[X]$, multiplié par un réel non nul.

Théorème 5.13 (théorème de décomposition en facteurs irréductibles dans $\mathbb{R}[X]$, variante)

Tout polynôme non nul P de $\mathbb{R}[X]$ se décompose de manière unique, à l'ordre près des facteurs, sous la forme

$$P = aP_1^{m_1}P_2^{m_2}\cdots P_r^{m_r}$$

avec $a \in \mathbb{R}^*$, $r \in \mathbb{N}$, les m_i dans \mathbb{N}^* et les P_i des polynômes irréductibles unitaires distincts de $\mathbb{R}[X]$.

Les facteurs irréductibles P_i sont donc de la forme $P_i = X - \alpha_i$ avec $\alpha_i \in \mathbb{R}$, ou $P_i = X^2 + a_i X + b_i$ avec $a_i, b_i \in \mathbb{R}$ et $a_i^2 - 4b_i < 0$.

Remarques:

- 1. Le polynôme P est scindé dans $\mathbb{R}[X]$ si et seulement si tous les facteurs irréductibles P_i sont de degré 1.
- 2. Une telle décomposition peut être obtenue à partir de celle dans $\mathbb{C}[X]$, en regroupant les facteurs correspondant à des couples de racines complexes conjuguées.
- 3. On peut aussi caractériser la divisibilité de deux polynômes réels à l'aide de leurs décompositions en facteurs irréductibles dans $\mathbb{R}[X]$, de même qu'avec les décompositions en irréductibles dans $\mathbb{C}[X]$.

Exemple 5.14: Factoriser $X^5 + 32$ dans $\mathbb{R}[X]$.

Exemple 5.15: Factoriser $X^n - 1$ dans $\mathbb{R}[X]$ (pour $n \in \mathbb{N}^*$).

6 Décomposition en éléments simples d'une fonction rationnelle

Vocabulaire : Une <u>fonction rationnelle</u> est une fonction qui s'écrit comme le quotient de deux fonctions polynomiales. On appelle pôles de la fonction les racines du polynôme associé au dénominateur.

Objectif: décomposer une fonction rationnelle quelconque en une somme de fonctions rationnelles « plus simples ».

Théorème 6.1 (théorème de décomposition en éléments simples pour des pôles simples, admis)

Soit $B \in \mathbb{K}[X]$ un polynôme scindé à racines simples de degré $n \in \mathbb{N}^*$. On note $\alpha_1, \ldots, \alpha_n$ les racines de B. Soit $A \in \mathbb{K}[X]$ tel que $\deg(A) < \deg(B)$ et tel que $\forall k \in [1; n], A(\alpha_k) \neq 0$. Alors il existe des uniques coefficients $\lambda_1, \ldots, \lambda_n \in \mathbb{K}$ tels que

$$\forall x \in \mathbb{K} \setminus \{\alpha_1; \dots; \alpha_n\}, \quad \frac{A(x)}{B(x)} = \sum_{k=1}^n \underbrace{\frac{\lambda_k}{x - \alpha_k}}_{\substack{\text{partie polaire associée au pôle simple } \alpha_k}}$$

De plus, $\forall k \in [1; n], \lambda_k = \frac{A(\alpha_k)}{B'(\alpha_k)}$

Exemple 6.2 : Donner la décomposition en éléments simples de $f: x \mapsto \frac{x+4}{x^3-3x^2+2x}$

Extension pour des polynômes quelconques :

- 1. Si $\deg(A) \geqslant \deg(B)$, en notant Q le quotient et R le reste de la division euclidienne de A par B, on obtient $\frac{A(x)}{B(x)} = Q(x) + \frac{R(x)}{B(x)}$. On a alors $\deg(R) < \deg(B)$, ce qui nous ramène au théorème ci-dessus.
- 2. Si B est scindé (toujours vraie dans $\mathbb{C}[X]$), notons m_k la multiplicité de α_k dans B. La décomposition en éléments simples s'écrit :

$$\frac{A(x)}{B(x)} = \sum_{k=1}^{n} \left(\frac{\lambda_{k,1}}{x - \alpha_k} + \frac{\lambda_{k,2}}{(x - \alpha_k)^2} + \dots + \frac{\lambda_{k,m_k}}{(x - \alpha_k)^{m_k}} \right)$$

3. Dans $\mathbb{R}[X]$, si B n'est pas scindé, alors B admet comme facteurs irréductibles des polynômes de degré 2 de discriminant strictement négatif. Dans ce cas, la partie polaire associée à un de ces facteurs (que l'on note $X^2 + aX + b$) est de la forme :

$$\frac{\lambda_{k,1}x + \mu_{k,1}}{x^2 + ax + b} + \dots + \frac{\lambda_{k,m_k}x + \mu_{k,m_k}}{(x^2 + ax + b)^{m_k}}$$

On peut retrouver cette décomposition à partir de la décomposition en éléments simple dans C puis en regroupant les parties polaires associées à des pôles conjugués.

Exemple 6.3 : Donner la forme de la décomposition en éléments simples dans $\mathbb R$ de :

1.
$$f: x \mapsto \frac{4x^4 + 4x^2 + 1}{x^2 - x}$$

2. $g: x \mapsto \frac{1}{x^2(x-1)^3}$
3. $h: x \mapsto \frac{x}{(x^2+1)^2(x^2-1)^2}$

2.
$$g: x \mapsto \frac{1}{x^2(x-1)^3}$$

3.
$$h: x \mapsto \frac{x}{(x^2+1)^2(x^2-1)^2}$$

Techniques pour calculer efficacement les coefficients de la décomposition en éléments simples d'une fonction rationnelle f:

- Si α est un pôle de multiplicité m, on peut obtenir le coefficient λ_m de l'élément simple $\frac{\lambda_m}{(x-\alpha)^m}$ en multipliant f par $(x - \alpha)^m$ puis en faisant tendre x vers α . • Considérer $\lim_{x \to +\infty} x^k f(x)$ pour un exposant k bien choisi (souvent k = 1).
- Utiliser le caractère conjugué des pôles et l'unicité de la décomposition en éléments simples pour un dénominateur dans $\mathbb{R}[X]$.
- Utiliser un argument de parité (ou d'imparité).
- Évaluer f en une valeur particulière qui n'est pas un pôle.

Exemple 6.4: Déterminer les décompositions en éléments simples dans \mathbb{R} et dans \mathbb{C} de :

1.
$$f: x \mapsto \frac{x^5}{x^4 - 1}$$

2.
$$g: x \mapsto \frac{x^2}{(x+1)^3}$$

Applications de la décomposition en éléments simples :

- Intégration de fonctions rationnelles : on se ramène à intégrer $\frac{u'}{u^k}$ ou $\frac{u'}{u^2+1}$.
- Calcul de certaines dérivées successives.
- Calcul de certaines sommes, pour faire apparaître des sommes télescopiques.

Exemple 6.5 : Déterminer les dérivées successives de $f: x \mapsto \frac{2}{x^2-1}$.

Exemple 6.6: Déterminer une primitive de $f: x \mapsto \frac{4+8x}{x^3+4x}$.

Exemple 6.7 : Montrer que la suite $(u_n)_{n \in [2,+\infty[}$ définie par $u_n = \sum_{k=2}^n \frac{1}{k^2 - 1}$ converge et déterminer sa limite.